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many-element linearly cascaded-microdisk resonator devices with up to 50 elements on a silicon chip.
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Microspiral resonators with the key merit of possessing
a single notch for gapless coupling are widely inves-
tigated for unidirectional lasers[1−4] since their initial
demonstration in 2003 by Chern et al.[1]. Thanks to
their unique gapless coupling via the notch, such mi-
crospiral resonators have also been studied for multiple-
element (three-element) cascaded-microdisk resonator-
based devices that offer novel wavelength and intensity
switching[5,6].

Recently, our research group further demonstrated
the microspiral resonators for passive wavelength-agile
filter applications, leveraging the advantage that light
can be directly in/out-coupled to the microspiral res-
onator via a waveguide that is seamlessly jointed to
the microspiral notch[7,8]. We have verified that such
non-evanescent gapless waveguide-coupling via the notch
preserves high-quality-factor (high-Q) whispering-gallery
(WG) like multimode resonances[7]. The shortcoming of
microspiral resonators with the single-notch design is
that an additional evanescently side-coupled waveguide
is still imposed for optical input/output (I/O) devices,
which are crucial building blocks for nascent photonic
integrated circuit applications. In particular, microspiral
resonators with a single-notch design are not favorable
for many-element cascaded-microresonator devices such
as optical delay lines[9].

In this letter, we propose and experimentally demon-
strate a novel double-notch-shaped microdisk resonator,
with the key merit of gapless input- and output-coupling
via two notches. Our two-dimensional (2D) finite-
difference time-domain (FDTD) simulations indicate
WG-like multimode resonances in such non-conventional
microdisks. Our experimental demonstrations reveal a
high-Q preserving microdisk of 50-µm radius in size with
Q as high as 24000. Furthermore, we also demonstrate
the many-element cascaded-microdisk resonator device
with up to 50 elements using such double-notch mi-
crodisks in a SiN-on-silica substrate.

Figure 1(a) shows the schematic of the double-notch
microdisk resonator-based channel notch filter. The

microdisk shape comprises two jointed non-identical
semi-circles with radii of r1 and r2. The mismatches
between the two semi-circles on both sides along the
diameter give two notches with widths of w1 and w2.
The notch widths are identical in the case that the two
semi-circles are concentric. Each notch is seamlessly
jointed to a waveguide of the same width. Thus, the
light can be gaplessly in/out-coupled to the microdisk via
these notch-waveguides without relying on the evanes-
cent field which imposes sub-micrometer gap spacing.
It is conceivable that the round-trip cavity light can be
wavefront-matched with the in-coupled lightwave, and
the resonance field is only partially out-coupled to the
throughputport. This enables such single-input, single-
output and gapless waveguides-coupled microdisk res-
onator to act as a channel rejection filter.

We numerically simulate the double-notch microdisk
resonators using FDTD method. We adopt two semi-
circles with radii of r1= 10 µm and r2= 9.7 µm, giving
identical notch size of w1 = w2 = 0.3 µm. In order to
account for the vertical dimension while using only 2D
simulations, we use an effective refractive index contrast
of 1.9/1.4 assuming a SiN-on-silica substrate.

Figure 1(b) shows the simulated TM-polarized
throughput-port transmission spectrum of the double-
notch microdisk-based filter. The free spectral range
(FSR) of ∼24 nm is consistent with the microdisk cir-
cumference. The calculated highest quality factor is
∼5500, which is high given by the FDTD spatial res-
olution. The inset of Fig. 1(b) shows the simulated
steady-state mode-field pattern of mode A. We observe
a WG-like resonance mode-field distribution, revealing
cavity-enhanced intensity and lightwave directly in/out-
coupled via the two notch-waveguides.

We fabricate the double-notch microdisk resonator-
based filters in a SiN-on-silica substrate using stan-
dard complementary metal oxide semiconductor (CMOS)
compatible silicon nanoelectronics fabrication processes.
We adopt a 1.1-µm-thick SiN device layer on a 1.5-
µm-thick silica under-cladding layer, each prepared by
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Fig. 1. (a) Schematic of the double-notch microdisk res-
onator. (b) 2D FDTD simulated TM-polarized throughput-
port transmission spectrum of the microdisk resonator, show-
ing high-Q and high-extinction-ratio resonances. The FSR
is consistent with the cavity circumference. Inset: simulated
resonance field patterns, displaying a WG-like mode-field dis-
tribution.

chemical vapor deposition (CVD) process on a 4” sili-
con wafer. The device structures are defined by i-line
(365 nm) photolithography followed by CF4-based reac-
tive ion plasma etching (RIPE). The filters are air-clad
ded. Figure 2(a) shows the top-view scanning electron
micrograph (SEM) of the fabricated device. The mea-
sured radii are r1 of ∼50 µm and r2 of ∼49 µm, giving
a notch size of ∼1 µm. The zoom-in view SEM shows
the waveguide-to-microresonator gapless notch-coupling
region. We note that the 1-µm-wide notch-waveguides
remain single-mode based on our numerical simulations
using beam-propagation method (BPM) (see the inset of
Fig. 2(b)).

Figure 2(b) shows the measured TM-polarized
throughput-port transmission spectrum of this device.
The FSR is measured to be ∼3.5 nm, which is consis-
tent with the microdisk circumference. This suggests
that the resonances are WG-like. The measured highest
Q is ∼24000, suggesting a high-Q preserving microcav-
ity. However, the resonance extinction ratio is relatively
small. We attribute this to the non-optimized design of
the gapless waveguide-to-microdisk coupling.

Leveraging the gapless in/out-coupling, we propose
and demonstrate many-element cascaded-microdisk res-
onator devices. All microdisks are directly coupled via
gapless inter-cavity coupling. We fabricate such many-
element devices on the same SiN chip, with the number
of microdisks spanning 2, 10, 20, and 50.

Figure 3(a) shows the optical micrograph of our fab-
ricated 50-element device with single input and single
output. Figures 3(b)−(d) show the zoom-in view SEMs
of the gapless in/out-coupling regions and the gapless
inter-cavity coupling region. All the cascaded double-

Fig. 2. (a) SEM of the fabricated double-notch microdisk
resonator-based filter in SiN-on-silica substrate. Inset: zoom-
in view of the notch junction. (b) Measured TM-polarized
throughput-port transmission spectrum. Inset: BPM simu-
lated mode-field distribution of a 1-µm-wide waveguide with
the same cross-section of fabricated waveguide.

notch microdisks are with the same design of r1 = 20
µm and r2 = 19.2 µm, with notches of 0.8 µm wide.

Light is directly input-coupled to the edge microdisk.
At the inter-cavity coupling region, the cavity light is
preferentially coupled from one microdisk to the next
one in the forward propagation direction (gray solid ar-
row in Fig. 3(d)). Nonetheless, due to the structural
asymmetry of the jointed notches, the cavity round-trip
light from the onward disk is only weakly backward-
coupled to the preceding disk (black dashed arrow in Fig.
3(d))[10]. The light propagating to the other edge disk is
output-coupled to the notch-waveguide. Compared with
the coupled-resonator optical-waveguide devices using
microring resonators[9], the merit of our many-element
device is that the gapless waveguide-to-cavity coupling
and inter-cavity coupling impose no narrow gap spacing.
This significantly relaxes the fabrication constraint which
is often the key bottleneck for large-scale integration of
microresonator arrays.

Figures 3(e)−3(h) show the measured TM-polarized
throughput-port multimode transmission spectra of 2-,
10-, 20-, and 50-element devices. In each case, we observe
a FSR of ∼ 9.4 nm, which is consistent with the single
microdisk circumference. As the number of cascaded
microdisks increases, some of the resonance lineshapes
are inhomogeneously broadened. We attribute such line-
shape broadening to possible size mismatches among
the cascaded microdisks due to inevitable fabrication
imperfections[9].

For the 50-element device, the broadened lineshape
results in periodic rejection bands with ∼5 nm band-
width and a flat baseline with > 35 dB extinction ratio.
We note that the spectra from the different devices dis-
play common resonances that are only slightly shifted in
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Fig. 3. (a) Optical micrograph of the fabricated 50-element
cascaded-microdisk resonator device using double-notch mi-
crodisks. (b)−(d) Zoom-in SEMs of the in/out-coupling
regions and the gapless inter-cavity coupling region. The
white arrows illustrate the light propagation. The crossed
white and black arrows illustrate the preferred forward-
coupling and weak backward-coupling. (e)−(h) Measured
TM-polarized throughput-port transmission spectra of many-
element cascaded-microdisk resonator devices with disk num-
bers of 2, 10, 20, and 50.

wavelength (e.g, the vertical dotted lines highlight the
common resonances that are separated by a FSR). From
the on-resonance drop-port insertion losses, we estimate
that the microdisk insertion loss is ∼0.16 dB/disk. This
is comparable to the previous demonstration using cas-
caded microring resonators which show ∼0.13 dB/ring[9].

In summary, we have proposed and demonstrated
double-notch microdisk resonator-based devices with
gapless in/out-coupling. Such building block is demon-
strated to be high-Q preserving and is favorable for
large-scale integration as many-element devices. The
many-element cascaded-microdisk resonator devices with
up to 50 elements are demonstrated. We therefore en-
vision that such device should be good candidate for
large-scale-integrated microresonator-based devices.
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